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Abstract— Plant diseases pose substantial challenges to agricultural output, needing early identification and intervention efforts. This 

paper offers a lightweight Convolutional Neural Network (CNN)-based model for disease classification in rice, wheat, and maize plants, 

which is implemented in MATLAB R2021a. The image dataset includes both damaged and healthy leaves from the three different crops 

such as Rice, Wheat, and Corn. The proposed CNN architecture is intended to be both efficient and effective, with convolutional layers, 

batch normalization, and pooling layers. A split dataset is used for training and evaluation, and real-time disease classification is 

presented using leaf images provided by the user. Accuracy, precision, recall, and F1 score are performance indicators that demonstrate 

the model's ability to detect and identify diseases across diverse crop kinds. This unified strategy provides a viable option for automated 

plant disease control, which advances precision. This method not only provides effective outputs but also better than many states of art 

methods. 
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I. INTRODUCTION 

Plant diseases are a severe danger to global food security, 

affecting crop productivity, quality, and economic stability. 

Diseases in key cereal crops such as rice, wheat, and maize 

can result in significant losses if not treated correctly. Early 

diagnosis and correct identification of plant diseases are 

essential for adopting appropriate treatments, such as 

targeted pesticide application or crop management measures, 

to reduce losses and ensure long-term agricultural practices. 

Traditional disease diagnosis methods frequently rely on 

agronomists' visual inspections or laboratory-based analysis, 

both of which can be time-consuming, subjective, and labour 

intensive. With the advancement of modern technology, 

notably in computer vision and machine learning, automated 

approaches to plant disease identification have arisen as 

viable alternatives to old methods. 

In this research, we intend to create a unified lightweight 

Convolutional Neural Network (CNN)-based model for 

disease detection and diagnosis in rice, wheat, and maize 

plants. CNNs have shown great effectiveness in a variety of 

image recognition applications, including medical imaging 

and object detection, making them ideal for plant disease 

categorization. The suggested model takes advantage of 

MATLAB's deep learning toolbox, providing a user-friendly 

environment for model construction, training, and 

deployment. By using a lightweight architecture, we hope to 

achieve a balance between model complexity and 

computational performance, allowing the model to be 

deployed on resource-constrained devices or in real-time 

applications. 

We present a lightweight CNN model for disease 

classification in maize, rice, and wheat. The suggested 

concept uses filters of different sizes at the same level, 

allowing it to  Identify key image features despite varying 

target size and are evaluated for disease detection in maize, 

rice, and wheat Crops.  

This project's dataset comprises of photos of damaged and 

healthy leaves collected during field surveys or experimental 

experiments. These photos are preprocessed and enhanced to 

make the model more resistant to changes in lighting 

conditions, leaf orientation, and disease severity. We intend 

to examine the accuracy, precision, recall, and F1 score of the 

CNN model through comprehensive experimentation and 

review. Furthermore, we intend to evaluate the model's 

generalization across multiple crop kinds and disease classes, 

opening the path for its practical deployment in real-world 

agricultural environments. Finally, this research seeks to 

contribute to the growth of precision agriculture by providing 

farmers and agricultural stakeholders with a dependable tool 

for early disease identification and management, thus 

boosting sustainable crop production. 

II. RELATED WORK 

In recent years, researchers have focused heavily on the 

development of automated systems for detecting and 

identifying plant diseases. Several technologies, including 

standard image processing techniques and machine learning 

algorithms, have been investigated to address this critical 

agricultural concern. This section examines several key 

studies and approaches in the subject of plant disease 

classification.  
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Deep learning-based approaches  

Deep learning approaches, particularly Convolutional 

Neural Networks (CNNs), have demonstrated promising 

performance in plant disease classification applications. 

Mohanty et al. (2016) [1] suggested a CNN-based algorithm 

for identifying plant diseases from a huge collection of crop 

photos. Similarly, Ferentinos (2018) [2] used transfer 

learning and pre-trained CNN architectures to classify plant 

illnesses accurately. 

Dataset Creation and Annotation: 

Building comprehensive datasets is crucial for training and 

evaluating machine learning models for plant disease 

classification. Studies like Fuentes et al. (2017) [3] focused 

on creating labeled datasets of plant diseases using 

crowdsourcing platforms, enabling the development of 

robust classification models. 

Mobile Applications and Field Deployments: 

With the injcreasing availability of smartphones and 

mobile devices, researchers have developed mobile 

applications for on-the-spot disease diagnosis in the field. 

Notably, the PlantVillage project (Hughes and Salathé, 2015) 

[4] introduced a mobile app that utilizes machine learning 

algorithms to identify plant diseases based on images 

captured by farmers. 

Fusion of Multi-Modal Data: 

Some studies have explored the fusion of multi-modal data, 

such as spectral and image-based information, to improve 

disease detection accuracy. For instance, Mahlein et al. (2019) 

[5] integrated hyper spectral imaging with machine learning 

techniques to enhance the detection of plant diseases at early 

stages. For example, Mahlein et al. (2019) [5] used hyper 

spectral imaging and machine learning techniques to improve 

the early diagnosis of plant diseases. 

Transfer Learning and Model Optimization:  

Transfer learning techniques are commonly used to adapt 

pre-trained CNN models for plant disease classification 

applications. Researchers such as Barbedo (2019) [6] studied 

the effect of various transfer learning algorithms on the 

performance of deep learning models for plant disease 

detection. These papers exhibit the many methodology and 

approaches used in plant disease categorization, highlighting 

the potential of machine learning and deep learning 

techniques to transform agricultural operations.  

Cruz et al. (2017) [7] used handcrafted characteristics and 

selection strategies to classify plant diseases. Their findings 

highlighted the need of obtaining discriminative 

characteristics from photos in order to increase classification 

accuracy.  

Ensemble learning and fusion techniques, such as random 

forests and ensemble CNNs, can improve disease 

classification performance by merging numerous classifiers 

or models. Studies such as Ghosal et al. (2018) [8] used 

ensemble approaches to increase the resilience and reliability 

of disease detection systems.  

Domain Adaptation and Transfer Learning:  

These strategies try to transfer information from one 

domain to another with varying distributions. Sa et al. (2020) 

[9] studied domain adaptation techniques for plant disease 

classification, with a focus on transferring models trained on 

one crop species to another. 

Researchers have developed innovative deep learning 

architectures for plant disease classification applications, in 

addition to classic CNNs. For example, Liakos et al. (2018) 

[10] proposed a deep neural network model with attention 

processes to detect olive illnesses in leaf photos.  

Farmers and citizen scientists are increasingly using 

interactive platforms to collect data and diagnose diseases. 

Sankaran et al. (2015) [11] demonstrated the promise of 

participatory approaches for creating large-scale datasets and 

engaging stakeholders in disease management.  

Deep learning has emerged as a potent method for plant 

disease classification, with Convolutional Neural Networks 

(CNNs) taking the lead. Researchers such as Barbedo (2018) 

[12] and Singh et al. (2020) [13] investigated several CNN 

architectures and optimization strategies to increase disease 

diagnosis accuracy. Transfer Learning and Domain 

Adaptation: These strategies help adjust pre-trained models 

to specific plant species or disease classes. Ghosal et al. 

(2019) [14] and Wang et al. (2021) [15] have both shown that 

transfer learning works well in plant disease classification 

tasks. 

Graph-based approaches and graph neural networks 

(GNNs) are gaining popularity for their capacity to grasp 

intricate linkages in plant pictures and disease patterns. 

Mohanta et al. (2020) [16] and Zhang et al. (2022) [17] 

demonstrate the efficacy of graph-based techniques in plant 

disease diagnosis. 

Multi-modal Data Fusion: 

The integration of multimodal data, such as spectral, 

thermal, and hyper spectral imaging, has been investigated to 

increase illness detection accuracy and robustness. Mahlein 

et al. (2019) [18] and Sadeghi-Tehran et al. (2020) [19] 

demonstrate the benefits of merging multiple data sources for 

plant disease identification. 

Edge Computing and IoT Devices:  

With the proliferation of edge computing and Internet of 

Things (IoT) devices, there is an increasing interest in 

designing lightweight models for on-device illness detection. 

Kumar et al. (2021) [20] and Mishra et al. (2022) [21] 

investigated the deployment of CNN models on 

resource-constrained devices for real-time disease diagnosis. 

Citizen science and crowdsourcing have helped collect 

massive datasets and engage stakeholders in disease 

monitoring programs. Hughes et al. (2016) [22] and 

Kamilaris et al. (2017) [23] demonstrated the collaborative 
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nature of plant disease research. As AI-based disease 

detection systems are used in real-world situations, there is an 

increasing demand for explainable AI strategies to improve 

model interpretability and user trust. Fuentes et al. (2021) [24] 

and Zhou et al. (2022) [25] investigated techniques for 

explaining CNN in plant disease diagnosis. 

These sources are only a portion of the large literature on 

automated plant disease detection and classification. By 

combining findings from numerous studies, academics may 

progress the area and create practical solutions for 

sustainable agriculture. 

III. PROPOSED METHOD 

Figure 1 shows the suggested CNN model for identifying 

diseases in maize, rice, and wheat. The model extracts 

prominent characteristics from images using different-sized 

filters at the same level. These filters allow the model to 

handle varying target sizes in distinct images. The proposed 

model consists of three building blocks (Figure 1), each with 

a similar design but different filter widths for convolutions at 

the same level. In Figure 1, each cell represents a single layer 

of the neural network, with input fields representing input 

size and output fields representing output size after operation.  

 
Fig 1. Proposed Architecture of light weight CNN Model 

Directed arrows indicate data flow between rows. The 

suggested model gets input from the Input Layer, which is 

then fed into three building components. These building 

blocks have the same architecture, consisting of two 

convolution layers (Conv2D), a depth-wise separable 

convolution layer (Separable Conv2D), and a 

GlobalMaxPooling2D layer.  

Image Augmentation  

Images in the collection vary in size. CNN models assume 

uniform input sizes and scale all images to respective dataset 

image sizes and perform the model training and testing. 

Furthermore, rescaling is employed to standardize the 

images' pixel values to the range [0, 1]. 

Input Layer: 

The input layer accepts RGB images of plant leaves as 

input. The size of the input layer is determined by the 

dimensions of the input images (height, width, and number of 

channels). 

Convolutional Layers: 

 
Fig 2. Convolution Operation 

Convolutional layers perform feature extraction by 

applying a set of learnable filters (kernels) to the input image. 

Each filter detects different features such as edges, textures, 

or patterns. The number of filters and their dimensions are 

adjustable parameters. Padding is applied to ensure that the 

spatial dimensions of the feature maps remain the same. 

Figure 2 shows the filter operation in a single convolution 

layer of the proposed model. The model's first building block 

uses 3 3 filters for convolutions, as shown in equation 1. The 

3 × 3 picture patch uses this filter to accomplish dot product, 

as seen in Figure 2. The convolution technique generates a 

matrix that serves as the feature map. Block 2 and Block 3 

convolution layers extract feature maps with 5 x 5 and 7 x 7 

filter sizes, respectively. The proposed methodology utilizes 

a Convolutional Neural Network (CNN) architecture for the 

detection and identification of diseases in rice, wheat, and 

corn plants. Each layer in the architecture plays a specific role 

in feature extraction, abstraction, and classification. Let's 

break down the methodology layer by layer: 

The Batch Normalization Layer improves training stability 

and speed by normalizing the previous layer's activations. It 

minimizes internal covariate shift by scaling and shifting 

normalized activations.  

The Rectified Linear Unit (ReLU) Layer brings non-linearity 

into the network by using the rectified linear activation 

function. ReLU enables the network to learn complicated 

patterns and correlations in the data. 

Max pooling layers down sample feature maps by 

lowering their spatial dimensions and Pooling helps to 

capture the most relevant information of obtained features, 

while lowering the computational complexity of input model 

by using strides in effective way. The size and stride of the 

pooling operation are programmable parameters.  

Fully connected layers use convolutional layers' derived 

features for categorization. Each neuron in the completely 

connected layer connects to every neuron in the previous 

layer. The number of neurons in the output layer is equal to 
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the number of classes (disease categories) in the dataset.  

The softmax layer translates the previous layer's raw 

scores into class probabilities. It assures that the sum of 

probability for all classes equals one. Softmax is frequently 

utilized as the output layer in classification tasks.  

The classification layer assigns a label to the input image 

using the class probabilities acquired from the softmax layer. 

It determines the projected class for the input image.  

This CNN architecture is trained on labeled data (pictures 

of damaged and healthy leaves) to learn the distinguishing 

properties of each class of plant disease. The trained model 

may then be used to accurately classify unseen photos and 

detect diseases in rice, wheat, and maize plants. 

IV. RESULTS DISCUSSION 

Evaluation Metric: 

This study examines 12 different illnesses and healthy 

classes of maize, rice, and wheat crops. As a result, 

multi-class classification is done, and the confusion matrix is 

utilized to generate several classification examples such as 

True Positive (TP), False Positive (FP), True Negative (TN), 

and False Negative (FN). In terms of multi-class picture 

classification, these can be read as follows: 

 True Positive (TP): Images correctly sorted into each 

relevant category. 

 False Positive (FP): Images from relevant categories 

wrongly classified as non-relevant.  

 True Negative (TN): Images correctly classified under 

all categories except relevant ones.  

 False Negative (FN): Images of non-relevant 

categories are wrongly categorized as relevant 

categories. These instances are utilized to determine 

the performance metrics as shown in Equations (1)-(4). 

For Class C, 

        1 

        2 

   3 

     4 

Equation (1) measures the model's precision by 

determining how many of the predicted images actually 

belong to the relevant category. In Equation (2), recall refers 

to the number of photos successfully predicted by the model 

for the relevant class. The F1-Score is calculated as the 

harmonic mean of precision and recall, as shown in equation 

(3). Equation (4) represents accuracy as the ratio of 

accurately predicted observations to total observations. 

Training Specifications: 

All models are trained in a supervised way utilizing 

categorical cross-entropy as a loss function, which computes 

the difference between two probability distributions. An 

Adam optimizer with a learning rate of 0.001 is used. 

Extensive comparison experiments are undertaken for 

evaluating the performance of the suggested light-weight 

CNN model for disease classification in maize, rice and 

wheat plants. This section discusses the acquired results. 

 
Fig 3. Training Progress plot for Rice leaf Dataset 

 
Fig 4. Training Progress plot for Corn leaf Dataset 
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Fig 5. Training Progress plot for Wheat leaf Dataset 

Classification Results for the Proposed Model 

This section evaluates the suggested framework for disease 

detection in Corn, Rice, and Wheat. It considers three 

scenarios:  

(i) Identifying healthy VS infected categories for 

each crop,  

(ii) identifying different diseases for each crop 

individually, and  

(iii) classifying healthy and diseased categories for 

Corn, Rice, and Wheat as a whole. 

 
a) Rice     b) Corn     c) Wheat 

Fig 6.  Input Leaf Images 

 

a)Rice 

 
b) Corn 

 
b) Wheat 

Fig 7. Classified Output 

 

 

 
Fig 8. Final Message Box after scucessful completeion of 

training and testing the model 

For Rice 

Test accuracy: 100% 

Confusion Matrix: 

    64     0     0     0 

     0    64     0     0 

     0     0    50     0 

     0     0     0    64 

Precision:     1     1     1     1 

Recall:    1     1     1     1 

F1 Score:     1     1     1     1 

For Corn 

Test accuracy: 99.2481% 

Confusion Matrix: 

   276     0     0     0 

     0   240     0     0 

     7     1   252     0 

     0     0     0   288 

Precision:    0.9753    0.9959    1.0000    1.0000 

Recall: 1.0000      1.0000    0.9692    1.0000 

F1 Score: 0.9875    0.9979    0.9844    1.0000 

For Wheat 

Training on single GPU. 

Test accuracy: 96.5909% 
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Confusion Matrix: 

    15     0     0     2 

     0    15     0     0 

     0     0    13     0 

     0     0     1    42 

Precision:   1.0000    1.0000    0.9286    0.9545 

Recall:    0.8824   1.0000   1.0000   0.9767 

F1 Score:    0.9375    1.0000    0.9630    0.9655 

After collecting these metrics for each dataset, we can 

evaluate the model's performance in terms of accuracy in 

correctly detecting diseased and healthy leaves, precision, 

recall, and total F1 score. Furthermore, we may compare the 

model's performance across different datasets to assess its 

generalization capacity. 

Discussion 

The current research reveals a lightweight model for 

identifying diseases in maize, rice, and wheat. The proposed 

model outperforms existing benchmark CNN models in 

terms of accuracy and number of parameters, achieving 

84.4%. The suggested model improves disease categorization 

by using different-sized filters across Convolutional layers at 

the same level. The derived features accurately diagnose 

diseases with varying widths of diseased areas, as evidenced 

by multiple cases.  

The results highlight the efficacy of the proposed model in 

crop-specific disease categorization scenarios. The suggested 

model achieves 99.74% accuracy in categorizing maize as 

healthy or diseased, without requiring any changes to the 

architecture. The classification of healthy and sick pictures of 

rice and wheat yielded similar results (82.67% and 97.5%, 

respectively). The proposed model serves as a versatile tool 

suitable for various settings. 

V. CONCLUSION & FUTURE SCOPE 

In conclusion, the suggested unified lightweight 

CNN-based model has shown promising results in disease 

detection and diagnosis in maize, rice, and wheat plants. 

Through rigorous examination using accuracy, precision, 

recall, and F1 score criteria; the model has demonstrated 

solid performance across numerous datasets, demonstrating 

its effectiveness in automated plant disease diagnosis. The 

model's ability to accurately distinguish between damaged 

and healthy leaves indicates its potential as a useful tool for 

farmers and agricultural stakeholders in monitoring and 

managing crop health.  

Future study could look into improving the model design, 

such as incorporating attention mechanisms or adding more 

data modalities, to improve its accuracy and robustness. 

Furthermore, efforts to implement the model in real-world 

agricultural settings, such as on-field implementations and 

integration with mobile applications, could have a substantial 

impact on sustainable crop production methods and 

contribute to global food security efforts. 
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